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Abstract

We describe how to create with machine learning techniques a gen-
erative, videorealistic, speech animation module. A human sub-
ject is first recorded using a videocamera as he/she utters a pre-
determined speech corpus. After processing the corpus automati-
cally, a visual speech module is learned from the data that is capable
of synthesizing the human subject’s mouth uttering entirely novel
utterances that were not recorded in the original video. The synthe-
sized utterance is re-composited onto a background sequence which
contains natural head and eye movement. The final output is vide-
orealistic in the sense that it looks like a video camera recording of
the subject. At run time, the input to the system can be either real
audio sequences or synthetic audio produced by a text-to-speech
system, as long as they have been phonetically aligned.

The two key contributions of this paper are 1) a variant of
the multidimensional morphable model (MMM) to synthesize new,
previously unseen mouth configurations from a small set of mouth
image prototypes; and 2) a trajectory synthesis technique based on
regularization, which is automatically trained from the recorded
video corpus, and which is capable of synthesizing trajectories in
MMM space corresponding to any desired utterance.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding—Video Analysis I.2.10 [Artificial
Intelligence]: Vision and Scene Understanding—Motion

Keywords: facial modeling, facial animation, morphing, optical
flow, speech synthesis, lip synchronization.

1 Overview

Is it possible to record a human subject with a video camera, pro-
cess the recorded data automatically, and then re-animate that sub-
ject uttering entirely novel utterances which were not included in
the original corpus? In this work, we present such a technique for
achieving videorealistic speech animation.

We choose to focus our efforts in this work on the issues related
to the synthesis of novel video, and not on novel audio synthesis.
Thus, novel audio needs to be provided as input to our system. This
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Figure 1: Some of the synthetic facial configurations output by our
system.

audio can be either real human audio (from the same subject or a
different subject), or synthetic audio produced by a text-to-speech
system. All that is required by our system is that the audio be pho-
netically transcribed and aligned. In the case of synthetic audio
from TTS systems, this phonetic alignment is readily available from
the TTS system itself [Black and Taylor 1997]. In the case of real
audio, publicly available phonetic alignment systems [Huang et al.
1993] may be used.

Our visual speech processing system is composed of two mod-
ules: The first module is the multidimensional morphable model
(MMM), which is capable of morphing between a small set of pro-
totype mouth images to synthesize new, previously unseen mouth
configurations. The second component is a trajectory synthesis
module, which uses regularization [Girosi et al. 1993] [Wahba
1990] to synthesize smooth trajectories in MMM space for any
specified utterance. The parameters of the trajectory synthesis mod-
ule are trained automatically from the recorded corpus using gradi-
ent descent learning.

Recording the video corpus takes on the order of 15 minutes.
Processing of the corpus takes on the order of several days, but,
apart from the specification of head and eye masks shown in Figure
3, is fully automatic, requiring no intervention on the part of the
user. The final visual speech synthesis module consists of a small
set of prototype images (46 images in the case presented here) ex-
tracted from the recorded corpus and used to synthesize all novel
sequences.

Application scenarios for videorealistic speech animation in-
clude: user-interface agents for desktops, TVs, or cell-phones; dig-
ital actors in movies; virtual avatars in chatrooms; very low bitrate
coding schemes (such as MPEG4); and studies of visual speech
production and perception. The recorded subjects can be regular
people, celebrities, ex-presidents, or infamous terrorists.
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In the following section, we begin by first reviewing the relevant
prior work and motivating our approach.

2 Background

2.1 Facial Modeling

One approach to model facial geometry is to use 3D methods. Parke
[1974] was one of the earliest to adopt such an approach by creat-
ing a polygonal facial model. To increase the visual realism of the
underlying facial model, the facial geometry is frequently scanned
in using Cyberware laser scanners. Additionally, a texture-map of
the face extracted by the Cyberware scanner may be mapped onto
the three-dimensional geometry [Lee et al. 1995b]. Guenter [1998]
demonstrated recent attempts at obtaining 3D face geometry from
multiple photographs using photogrammetric techniques. Pighin et
al. [1998] captured face geometry and textures by fitting a generic
face model to a number of photographs. Blanz and Vetter [1999]
demonstrated how a large database of Cyberware scans may be
morphed to obtain face geometry from a single photograph.

An alternative to the 3D modeling approach is to model the talk-
ing face using image-based techniques, where the talking facial
model is constructed using a collection of example images captured
of the human subject. These methods have the potential of achiev-
ing very high levels of videorealism, and are inspired by the recent
success of similar sample-based methods for audio speech synthe-
sis [Moulines and Charpentier 1990].

Image-based facial animation techniques need to solve the video
generation problem: How does one build a generative model of
novel video that is simultaneously photorealistic, videorealistic,
and parsimonious? Photorealism means that the novel generated
images exhibit the correct visual structure of the lips, teeth, and
tongue. Videorealism means that the generated sequences exhibit
the correct motion, dynamics, and coarticulation effects [Cohen and
Massaro 1993]. Parsimony means that the generative model is rep-
resented compactly using a few parameters.

Bregler, Covell, and Slaney [1997] describe an image-based fa-
cial animation system called Video Rewrite in which the video
generation problem is addressed by breaking down the recorded
video corpus into a set of smaller audiovisual basis units. Each
one of these short sequences is a triphone segment, and a large
database with all the acquired triphones is built. A new audiovi-
sual sentence is constructed by concatenating the appropriate tri-
phone sequences from the database together. Photorealism in Video
Rewrite is addressed by only using recorded sequences to generate
the novel video. Videorealism is achieved by using triphone con-
texts to model coarticulation effects. In order to handle all the pos-
sible triphone contexts, however, the system requires a library with
tens and possibly hundreds of thousands of subsequences, which
seems to be an overly-redundant and non-parsimonious sampling
of human lip configurations. Parsimony is thus sacrificed in favor
of videorealism.

Essentially, Video Rewrite adopts a decidedly agnostic approach
to animation: since it does not have the capacity to generate
novel lip imagery from a few recorded images, it relies on the re-
sequencing of a vast amount of original video. Since it does not
have the capacity to model how the mouth moves, it relies on sam-
pling the dynamics of the mouth using triphone segments.

The approach used in this work presents another approach to
solving the video generation problem which has the capacity to gen-
erate novel video from a small number of examples as well as the
capacity to model how the mouth moves. This approach is based on
the use of a multidimensional morphable model (MMM), which is
capable of multdimensional morphing between various lip images
to synthesize new, previously unseen lip configurations. MMM’s
have already been introduced in other works [Poggio and Vetter

1992] [Beymer and Poggio 1996] [Cootes et al. 1998] [Jones and
Poggio 1998] [Lee et al. 1998] [Blanz and Vetter 1999] [Black et al.
2000]. In this work, we develop an MMM variant and show its util-
ity for facial animation.

MMM’s are powerful models of image appearance because they
combine the power of vector space representations with the real-
ism of morphing as a generative image technique. Prototype exam-
ple images of the mouth are decomposed into pixel flow and pixel
appearance axes that represent basis vectors of image variation.
These basis vectors are combined in a multidimensional fashion to
produce novel, realistic, previously unseen lip configurations.

As such, an MMM is more powerful than other vector space rep-
resentations of images which do not model pixel flow explicitly.
Cosatto and Graf [1998], for example, describe an approach which
is similar to ours, except that their generative model involved simple
pixel blending of images, which fails to produce realistic transitions
between mouth configurations.

An MMM is also more powerful than simple 1-dimensional mor-
phing between 2 image end-points [Beier and Neely 1992], as well
as techniques such as those of Scott et al. [1994] [1997] and Ezzat
and Poggio [2000], which morphed between several visemes in a
pairwise fashion. By embedding the prototype images in a vector
space, an MMM is capable of generating smooth curves through lip
space which handle complex speech animation effects in a non-ad-
hoc manner.

2.2 Speech Animation

Speech animation techniques have traditionally included both
keyframing methods and physics-based methods, and have been
extended more recently to include machine learning methods. In
keyframing, the animator specifies particular key-frames, and the
system generates intermediate values [Parke 1974] [Pearce et al.
1986] [Cohen and Massaro 1993] [LeGoff and Benoit 1996]. In
physics-based methods, the animator relies on the laws of physics
to determine the mouth movement, given some initial conditions
and a set of forces for all time. This technique, which requires
modeling the underlying facial muscles and skin, was demonstrated
quite effectively by [Waters 1987] [Lee et al. 1995b]. Finally, ma-
chine learning methods are a new class of animation tools which are
trained from recorded data and then used to synthesize new motion.
Examples include hidden markov models (HMMs), which were
demonstrated effectively for speech animation by [Brand 1999]
[Masuko et al. 1998] [Brooke and Scott 1994].

Speech animation needs to solve several problems simultane-
ously: firstly, the animation needs to have the correct motion, in
the sense that the appropriate phonemic targets need to be realized
by the moving mouth. Secondly, the animation needs to be smooth,
not exhibiting any unnecessary jerks. Thirdly, it needs to display
the correct dynamics: plosives such as b and p need to occur fast.
Finally, speech animation needs to display the correct coarticula-
tion effects, which determine the effects of neighboring phonemes
on the current phoneme shape.

In this work, we present a trajectory synthesis module to ad-
dress the issues of synthesizing mouth trajectories with correct mo-
tion, smoothness, dynamics, and coarticulation effects. This mod-
ule maps from an input stream of phonemes (with their respective
frame durations) to a trajectory of MMM shape-appearance param-
eters. This trajectory is then fed into the MMM to synthesize the
final visual stream that represents the talking face.

Unlike Video Rewrite [Bregler et al. 1997], which relies on an
exhaustive sampling of triphone segments to model phonetic con-
texts, coarticulation effects in our system emerge directly from our
speech model. Each phoneme in our model is represented as a lo-
calized Gaussian target region in MMM space with a particular po-
sition and covariance. The covariance of each phoneme acts as a
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Figure 2: An overview of our videorealistic speech animation sys-
tem.

spring whose tension pulls the trajectory towards each phonetic re-
gion with a force proportional to observed coarticulation effects in
the data.

However, unlike Cohen and Massaro [1993] (who also modeled
coarticulation using localized Gaussian-like regions), our model
of coarticulation is not hand-tuned, but rather trained from the
recorded corpus itself using a gradient descent learning procedure.
The training process determines the position and shape of the pho-
netic regions in MMM space in a manner which optimally recon-
structs the recorded corpus data.

3 System Overview

An overview of our system is shown in Figure 2. After recording
the corpus (Section 4), analysis is performed to produce the final
visual speech module. Analysis itself consists of three sub-steps:
First, the corpus is pre-processed (Section 5) to align the audio and
normalize the images to remove head movement. Next, the MMM
is created from the images in the corpus (Section 6.2). Finally, the
corpus sequences are analyzed to produce the phonetic models used
by the trajectory synthesis module (Sections 6.4 and 7.2).

Given a novel audio stream that is phonetically aligned, synthe-
sis proceeds in three steps: First, the trajectory synthesis module is
used to synthesize the trajectory in MMM space using the trained
phonetic models (Section 7). Secondly, the MMM is used to syn-
thesize the novel visual stream from the trajectory parameters (Sec-
tion 6.3). Finally, the post-processing stage composites the novel
mouth movement onto a background sequence containing natural
eye and head movements (Section 8).

4 Corpus

An audiovisual corpus of a human subject uttering various utter-
ances was recorded. Recording was performed at a TV studio
against a blue “chroma-key” background with a standard Sony ana-
log TV camera. The data was subsequently digitized at a 29.97
fps NTSC frame rate with an image resolution of 640 by 480 and
an audio resolution of 44.1KHz. The final sequences were stored
as Quicktime sequences compressed using a Sorenson coder. The
recorded corpus lasts for 15 minutes, and is composed of approxi-
mately 30000 frames.

The recorded corpus consisted of 1-syllable and 2-syllable
words, such as ‘‘bed’’ and ‘‘dagger’’. A total of 152 1-syllable
words and 156 2-syllable words were recorded. In addition, the
corpus included 105 short sentences, such as ‘‘The statue was

Figure 3: The head, mouth, eye, and background masks used in
the pre-processing and post-processing steps. Specification of these
masks is the only manual step required by this system.

closed to tourists Sunday’’. The subject was asked to ut-
ter all sentences in a neutral expression. In addition, the sentences
themselves were designed to elicit no emotions from the subject.

5 Pre-Processing

The recorded corpus data needs to be pre-processed in several ways
before it may be processed effectively for re-animation.

Firstly, the audio needs to be phonetically aligned in order to be
able to associate a phoneme for each image in the corpus. We per-
form audio alignment on all the recorded sequences using the CMU
Sphinx system [Huang et al. 1993], which is publicly available.
Given an audio sequence and an associated text transcript of the
speech being uttered, alignment systems use forced Viterbi search
to find the optimal start and end of phonemes for the given audio
sequence. The alignment task is easier than the speech recognition
task because the text of the audio being uttered is known apriori.

Secondly, each image in the corpus needs to be normalized so
that only movement occurring in the entire frame is the mouth
movement associated with speech. Although the subject was in-
structed to keep her head steady during recording, residual head
movement nevertheless still exists in the final recorded sequences.
Since the head motion is small, we make the simplifying assump-
tion that it can be approximated as the perspective motion of a plane
lying on the surface of the face. Planar perspective deformations
[Wolberg 1990] have 8 degrees of freedom, and can be inferred
using 4 corresponding points between a reference frame and the
current frame. We employ optical flow [Horn and Schunck 1981]
[Barron et al. 1994] [Bergen et al. 1992] to extract correspondences
for 640x480 pixels, and use least squares to solve the overdeter-
mined system of equations to obtain the 8 parameters of the per-
spective warp. Among the 640x480 correspondences, only those
lying within the head mask shown in Figure 3 are used. Pixels from
the background area are not used because they do not exhibit any
motion at all, and those from the mouth area exhibit non-rigid mo-
tion associated with speech.

The images in the corpus also exhibit residual eye movement
and eye blinks which need to be removed. An eye mask is created
(see Figure 3) which allows just the eyes from a single frame to be
pasted onto the rest of the corpus imagery. The eye mask is blurred
at the edges to allow a seamless blend between the pasted eyes and
the rest of face.

390



6 Multidimensional Morphable Models

At the heart of our visual speech synthesis approach is the multidi-
mensional morphable model representation, which is a generative
model of video capable of morphing between various lip images to
synthesize new, previously unseen lip configurations.

The basic underlying assumption of the MMM is that the com-
plete set of mouth images associated with human speech lies in
a low-dimensional space whose axes represent mouth appearance
variation and mouth shape variation. Mouth appearance is repre-
sented in the MMM as a set of prototype images extracted from the
recorded corpus. Mouth shape is represented in the MMM as a set
of optical flow vectors [Horn and Schunck 1981] computed auto-
matically from the recorded corpus. In the work presented here,
46 images are extracted and 46 optical flow correspondences are
computed. The low-dimensional MMM space is parameterized by
shape parameters α and appearance parameters β .

The MMM may be viewed as a “black box” capable of perform-
ing two tasks: Firstly, given as input a set of parameters (α,β ),
the MMM is capable of synthesizing an image of the subject’s face
with that shape-appearance configuration. Synthesis is performed
by morphing the various prototype images to produce novel, previ-
ously unseen mouth images which correspond to the input parame-
ters (α,β ).

Conversely, the MMM can also perform analysis: given an in-
put lip image, the MMM computes shape and appearance parame-
ters (α,β ) that represent the position of that input image in MMM
space. In this manner, it is possible to project the entire recorded
corpus onto the constructed MMM, and produce a time series of
(αt ,βt) parameters that represent trajectories of mouth motion in
MMM space. We term this operation analyzing the recorded cor-
pus.

In the following sections, we describe how a multidimensional
morphable model is defined, how it may be acquired automatically
from a recorded video corpus, how it may be used for synthesis,
and, finally, how such a morphable model may be used for analysis.

6.1 Definition

An MMM consists of a set of prototype images {Ii}
N
i=1 that repre-

sent the various lip textures that will be encapsulated by the MMM.
One image is designated arbitrarily to be the reference image I1.

Additionally, the MMM consists of a set of prototype flows
{Ci}

N
i=1 that represent the correspondences between the reference

image I1 and the other prototype images in the MMM. The corre-
spondence from the reference image to itself, C1, is designated to
be an empty, zero, flow.

In this work, we choose to represent the correspondence maps
using relative displacement vectors:

Ci(p) = {di
x(p),di

y(p)}. (1)

A pixel in image I1 at position p = (x,y) corresponds to a pixel in
image Ii at position (x+di

x(x,y),y+di
y(x,y)).

Previous methods for computing correspondence [Beier and
Neely 1992] [Scott et al. 1994] [Lee et al. 1995a] adopted feature-
based approaches, in which a set of high-level shape features com-
mon to both images is specified. When it is done by hand, how-
ever, this feature specification process can become quite tedious
and complicated, especially in cases when a large amount of im-
agery is involved. In this work, we make use of optical flow [Horn
and Schunck 1981] [Barron et al. 1994] [Bergen et al. 1992] al-
gorithms to estimate this motion. This motion is captured as a
two-dimensional array of displacement vectors, in the same exact
format shown in Equation 1. In particular, we utilize the coarse-to-
fine, gradient-based optical flow algorithms developed by [Bergen

Figure 4: 24 of the 46 image prototypes included in the MMM. The
reference image is the top left frame.

et al. 1992]. These algorithms compute the desired flow displace-
ments using the spatial and temporal image derivatives. In addition,
they embed the flow estimation procedure in a multiscale pyrami-
dal framework [Burt and Adelson 1983], where initial displacement
estimates are obtained at coarse resolutions, and then propagated to
higher resolution levels of the pyramid.

6.2 Building an MMM

An MMM must be constructed automatically from a recorded cor-
pus of {I j}

S
j=1 images. The two main tasks involved are to choose

the image prototypes {Ii}
N
i=1, and to compute the correspondence

{Ci}
N
i=1 between them. We discuss the steps to do this briefly be-

low. Note that the following operations are performed on the entire
face region, although they need only be performed on the region
around the mouth.

6.2.1 PCA

For the purpose of more efficient processing, principal component
analysis (PCA) is first performed on all the images of the recorded
video corpus. PCA allows each image in the video corpus to be
represented using a set of low-dimensional parameters. This set of
low-dimensional parameters may thus be easily loaded into mem-
ory and processed efficiently in the subsequent clustering and Dijk-
stra steps.

Performing PCA using classical autocovariance methods
[Bishop 1995], however, usually requires loading all the images and
computing a very large autocovariance matrix, which requires a lot
of memory. To avoid this, we adopt an on-line PCA method, termed
EM-PCA [Roweis 1998] [Tipping and Bishop 1999], which allows
us to perform PCA on the images in the corpus without loading
them all into memory. EM-PCA is iterative, requiring several itera-
tions, but is guaranteed to converge in the limit to the same principal
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components that would be extracted from the classical autocovari-
ance method. The EM-PCA algorithm is typically run in this work
for 10 iterations.

Performing EM-PCA produces a set of D 624x472 principal
components and a matrix Σ of eigenvalues. In this work, D = 15
PCA bases are retained. The images in the video corpus are subse-
quently projected on the principal components, and each image I j
is represented with a D-dimensional parameter vector p j .

6.2.2 K-means Clustering

Selection of the prototype images is performed using k-means clus-
tering [Bishop 1995]. The algorithm is applied directly on the
{p j}

S
j=1 low dimensional PCA parameters, producing N cluster

centers. Typically the cluster centers extracted by k-means clus-
tering do not coincide with actual image datapoints, so the nearest
images in the dataset to the computed cluster centers are chosen to
be the final image prototypes {Ii}

N
i=1 for use in our MMM.

It should be noted that k-means clustering requires the use of an
internal distance metric with which to compare distances between
datapoints and the chosen cluster centers. In our case, since the
image parameters are themselves produced by PCA, the appropriate
distance metric between two points pm and pn is the Mahalanobis
distance metric:

d(pm, pn) = (pm − pn)
T Σ−1(pm − pn) (2)

where Σ is the afore-mentioned matrix of eigenvalues extracted by
the EM-PCA procedure.

We selected N = 46 image prototypes in this work, which are
partly shown in Figure 4. The top left image is the reference im-
age I1. There is nothing magical about our choice of 46 prototypes,
which is in keeping with the typical number of visemes other re-
searchers have used [Scott et al. 1994] [Ezzat and Poggio 2000]. It
should be noted, however, that the 46 prototypes have no explicit re-
lationship to visemes, and instead form a simple basis set of image
textures.

6.2.3 Dijkstra

After the N = 46 image prototypes are chosen, the next step in
building an MMM is to compute correspondence between the refer-
ence image I1 and all the other prototypes. Although it is in princi-
ple possible to compute direct optical flow between the images, we
have found that direct application of optical flow is not capable of
estimating good correspondence when the underlying lip displace-
ments between images are greater than 5 pixels.

It is possible to use flow concatenation to overcome this prob-
lem. Since the original corpus is digitized at 29.97 fps, there are
many intermediate frames that lie between the chosen prototypes.
A series of consecutive optical flow vectors between each interme-
diate image and its successor may be computed and concatenated
into one large flow vector that defines the global transformation be-
tween the chosen prototypes (see Appendix A for details on flow
concatenation).

Typically, however, prototype images are very far apart in the
recorded visual corpus, so it is not practical to compute concate-
nated optical flow between them. The repeated concatenation that
would be involved across the hundreds or thousands of intermediate
frames leads to a considerably degraded final flow.

To compute good correspondence between prototypes, a method
is needed to figure out how to compute the path from the reference
example I1 to the chosen image prototypes Ii without repeated con-
catenation over hundreds or thousands of intermediates frames. We
accomplish this by constructing the corpus graph representation of
the corpus: A corpus graph is an S-by-S sparse adjacency graph
matrix in which each frame in the corpus is represented as a node

iC

iC

C 1

synth

synth
C 1

I1

I i

1I
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- ),C i

-
C 1

C i C i1C

synth
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Figure 5: The flow reorientation process: First, Ci is subtracted
from the synthesized flow Csynth

1
. Second, this flow vector is itself

forward warped along Ci.

in a graph connected to k nearest images. The k nearest images are
chosen using the k-nearest neighbors algorithm [Bishop 1995], and
the distance metric used is the Mahalanobis distance in Equation 2
applied to the PCA parameters p. Thus, an image is connected in
the graph to the k other images that look most similar to it. The
edge-weight between a frame and its neighbor is the value of the
Mahalanobis distance. We set k = 20 in this work.

After the corpus graph is computed, the Dijkstra shortest path
algorithm [Cormen et al. 1989] [Tenenbaum et al. 2000] is used
to compute the shortest path between the reference example I1 and
the other chosen image prototypes Ii. Each shortest path produced
by the Dijkstra algorithm is a list of images from the corpus that
cumulatively represent the shortest deformation path from I1 to Ii
as measured by the Mahalanobis distance. Concatenated flow from
I1 to Ii is then computed along the intermediate images produced
by the Dijkstra algorithm. Since there are 46 images, N = 46 corre-
spondences {Ci}

N
i=1 are computed in this fashion from the reference

image I1 to the other image prototypes {Ii}
N
i=1.

6.3 Synthesis

The goal of synthesis is to map from the multidimensional param-
eter space (α,β ) to an image which lies at that position in MMM
space. Since there are 46 correspondences, α is a 46-dimensional
parameter vector that controls mouth shape. Similarly, since there
are 46 image prototypes, β is a 46-dimensional parameter vector
that controls mouth texture. The total dimensionality of (α,β ) is
92.

Synthesis first proceeds by synthesizing a new correspondence
Csynth using linear combination of the prototype flows Ci:

Csynth
1 =

N

∑
i=1

αiCi. (3)

The subscript 1 in Equation 3 above is used to emphasize that Csynth
1

originates from the reference image I1, since all the prototype flows
are taken with I1 as reference.

Forward warping may be used to push the pixels of the reference
image I1 along the synthesized correspondence vector Csynth

1
. No-

tationally, we denote the forward warping operation as an operator
W(I,C) that operates on an image I and a correspondence map C
(see Appendix B for details on forward warping).
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Figure 6: Top: Original images from our corpus. Bottom: Corre-
sponding synthetic images generated by our system.

However, a single forward warp will not utilize the image tex-
ture from all the examples. In order to take into account all image
texture, a correspondence re-orientation procedure first described
in [Beymer et al. 1993] is adopted that re-orients the synthesized
correspondence vector Csynth

1
so that it originates from each of the

other example images Ii. Reorientation of the synthesized flow
Csynth

1
proceeds in two steps, shown figuratively in Figure 5. First,

Ci is subtracted from the synthesized flow Csynth
1

to yield a flow that
contains the correct flow geometry, but which originates from the
reference example I1 rather than the desired example image Ii. Sec-
ondly, to move the flow into the correct reference frame, this flow
vector is itself warped along Ci. The entire re-orientation process
may be denoted as follows:

Csynth
i = W(Csynth

1 −Ci,Ci). (4)

Re-orientation is performed for all examples in the example set.
The third step in synthesis is to warp the prototype images Ii

along the re-oriented flows Csynth
i to generate a set of N warped

image textures Iwarped
i :

Iwarped
i = W(Ii,C

synth
i ). (5)

The fourth and final step is to blend the warped images Iwarped
i

using the β parameters to yield the final morphed image:

Imorph =
N

∑
i=1

βiI
warped
i . (6)

Combining Equations 3 through 6 together, our MMM synthesis
may be written as follows:

Imorph(α,β ) =
N

∑
i=1

βiW(Ii,W(
N

∑
j=1

α jC j −Ci,Ci)). (7)

Empirically we have found that the MMM synthesis technique
is capable of surprisingly realistic re-synthesis of lips, teeth, and
tongue. However, the blending of multiple images in the MMM
for synthesis tends to blur out some of the finer details in the teeth
and tongue (See Appendix C for a discussion of synthesis blur).
Shown in Figure 6 are some of the synthetic images produced by
our system, along with their real counterparts for comparison.

6.4 Analysis

The goal of analysis is to project the entire recorded corpus
{I j}

S
j=1 onto the constructed MMM, and produce a time series

of (α j,β j)
S
j=1 parameters that represent trajectories of the original

mouth motion in MMM space.
One possible approach for analysis of images is to perform

analysis-by-synthesis: In this approach, used in various forms in

Figure 7: Top: Analyzed αi flow parameters computed for one im-
age. Bottom: The corresponding analyzed βi texture parameters
computed for the same image. The βi texture parameters are typi-
cally zero for all but a few image prototypes.

[Jones and Poggio 1998] [Blanz and Vetter 1999], the synthesis al-
gorithm is used to synthesize an image Isynth(α,β ), which is then
compared to the novel image using an error metric (ie, the L2
norm). Gradient-descent is then usually performed to change the
parameters in order to minimize the error, and the synthesis process
is repeated. The search ends when a local minimum is achieved.
Analysis-by-synthesis, however, is very slow in the case when a
large number of images are involved.

In this work we choose another method that is capable of ex-
tracting parameters (α,β ) in one iteration. In addition to the image
Inovel to be analyzed, the method requires that the correspondence
Cnovel from the reference image I1 in the MMM to the novel image
Inovel be computed beforehand. In our case, most of the novel im-
agery to be analyzed will be from the recorded video corpus itself,
so we employ the Dijkstra approach discussed in Section 6.2.3 to
compute good quality correspondences between the reference im-
age I1 and Inovel .

Given a novel image Inovel and its associated correspondence
Cnovel , the first step of the analysis algorithm is to estimate the pa-
rameters α which minimize

‖Cnovel −
N

∑
i=1

αiCi‖. (8)

This is solved using the pseudo-inverse:

α = (CTC)
−1

CTCnovel (9)

where C above is a matrix containing all the prototype correspon-
dences {Ci}

N
i=1.

After the parameters α are estimated, N image warps are syn-
thesized in the same manner as described in Section 6.3 using flow-
reorientation and warping:

Iwarp
i = W(Ii,W(

N

∑
i=1

αiCi −Ci,Ci)). (10)

The final step in analysis is to estimate the values of β as the values
which minimize
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Figure 8: Histograms for the α1 parameter for the \w\, \m\,
\aa\ and \ow\ phones.

‖Inovel −∑N
i=1 βiI

warp
i ‖ subject to

βi > 0 ∀i and ∑N
i=1 βi = 1.

(11)

The non-negativity constraint above on the βi parameters ensures
that pixel values are not negated. The normalization constraint en-
sures that the βi parameters are computed in a normalized manner
for each frame, which prevents brightness flickering during synthe-
sis. The form of the imposed constraints cause the computed βi
parameters to be sparse (see Figure 7), which enables efficient syn-
thesis by requiring only a few image warps (instead of the complete
set of 46 warps). Equation 11, which involves the minimization
of a quadratic cost function subject to constraints, is solved using
quadratic programming methods. In this work, we use the Matlab
function quadprog.

Each utterance in the corpus is analyzed with respect to the
92-dimensional MMM created in Section 6.2, yielding a set of
zt = (αt ,βt) parameters for each utterance. Analysis takes on the
order of 15 seconds per frame on a circa 1998 450 MHz Pentium
II machine. Shown in Figure 9 in solid blue are example analyzed
trajectories for α12 and β28 computed for the word tabloid.

7 Trajectory Synthesis

7.1 Overview

The goal of trajectory synthesis is to map from an input phone
stream {Pt} to a trajectory yt = (αt ,βt) of parameters in MMM
space. After the parameters are synthesized, Equation 7 from Sec-
tion 6.3 is used to create the final visual stream that represents the
talking face.

The phone stream is a stream of phonemes {Pt} represent-
ing that phonetic transcription of the utterance. For example,
the word one may be represented by a phone stream {Pt}

15
t=1

= (\w\, \w\, \w\, \w\, \uh\, \uh\, \uh\, \uh\, \uh\,
\uh\, \n\, \n\, \n\, \n\, \n\). Each element in the phone
stream represents one image frame. We define T to be the length of
the entire utterance in frames.

Since the audio is aligned, it is possible to examine all the flow
and texture parameters for any particular phoneme. Shown in Fig-
ure 8 are histograms for the α1 parameter for the \w\, \m\, \aa\
and \ow\ phones. Evaluation of the analyzed parameters from the

corpus reveals that parameters representing the same phoneme tend
to cluster in MMM space. We represent each phoneme p mathemat-
ically as a multidimensional Gaussian with mean µp and diagonal
covariance Σp. Separate means and covariances are estimated for
the flow and texture parameters 1.

The trajectory synthesis problem is framed mathematically as a
regularization problem [Girosi et al. 1993] [Wahba 1990]. The goal
is to synthesize a trajectory y which minimizes an objective function
E consisting of a target term and a smoothness term:

E = (y−µ)T DT Σ−1D(y−µ)
︸ ︷︷ ︸

target term

+λ yTW TWy
︸ ︷︷ ︸

smoothness

. (12)

The desired trajectory y is a vertical concatenation of the individ-
ual yt = αt terms at each time step (or yt = βt , since we treat flow
and texture parameters separately):

y =






yt
...

yT




 (13)

The target term consists of the relevant means µ and covariances
Σ constructed from the phone stream:

µ =






µPt
...

µPT




 ,Σ =






ΣPt

. . .
ΣPT




 (14)

The matrix D is a duration-weighting matrix which emphasizes
the shorter phonemes and de-emphasizes the longer ones, so that
the objective function is not heavily skewed by the phonemes of
longer duration:

D =











√

I −
DP1
T √

I −
DP2
T

. . .
√

I −
DPT

T











(15)

One possible smoothness term consists of the first order differ-
ence operator:

W =







−I I
−I I

. . .
−I I







(16)

Higher orders of smoothness are formed by repeatedly multi-
plying W with itself: second order W TW TWW , third order
W TW TW TWWW , and so on.

Finally, the regularizer λ determines the trade-off between both
terms.

Taking the derivative of Equation 12 and minimizing yields the
following equation for synthesis:

(DT Σ−1D+λW TW )y = DT Σ−1Dµ. (17)

Given known means µ , covariances Σ, and regularizer λ , syn-
thesis is simply a matter of plugging them into Equation 17 and

1Technically, since the texture parameters are non-negative, they are best
modeled using Gamma distributions not Gaussians. In that case, Equation
12 needs to be re-written for Gamma distributions. In practice, however, we
have found Gaussians to work well enough for texture parameters.
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Figure 9: Top: The analyzed trajectory for α12 (in solid blue), com-
pared with the synthesized trajectory for α12 before training (in
green dots) and after training (in red crosses). Bottom: Same as
above, but the trajectory is for β28. Both trajectories are from the
word tabloid.

solving for y using Gaussian elimination. This is done separately
for the flow and the texture parameters. In our experiments a regu-
larizer of degree four yielding multivariate additive quintic splines
[Wahba 1990] gave satisfactory results (see next subsection).

Coarticulation effects in our system are modeled via the magni-
tude of the variance ΣP for each phoneme. Small variance means
the trajectory must pass through that region in phoneme space, and
hence neighboring phonemes have little coarticulatory effect. On
the other hand, large variance means the trajectory has a lot of flex-
ibility in choosing a path through a particular phonetic region, and
hence it may choose to pass through regions which are closer to
a phoneme’s neighbors. The phoneme will thus experience large
coarticulatory effects.

There is no explicit model of phonetic dynamics in our system.
Instead, phonetic dynamics emerge implicitly through the interplay
between the magnitude of the variance ΣP for each phoneme (which
determines the phoneme’s “spatial” extent), and the input phone
stream (which determines the duration in time of each phoneme).
Equation 12 then determines the speed through a phonetic region in
a manner which balances nearness to the phoneme with smoothness
of the overall trajectory. In general, we find the trajectories speed up
in regions of small duration and small variance (ie plosives), while
they slow down in regions of large duration and large variance (ie
silences).

7.2 Training

The means µp and covariances Σp for each phone p are initialized
directly from the data using sample means and covariances. How-
ever, the sample estimates tend to average out the mouth movement
so that it looks under-articulated. As a consequence, there is a need
to adjust the means and variances to better reflect the training data.

Gradient descent learning [Bishop 1995] is employed to adjust
the mean and covariances. First, the Euclidean error metric is cho-
sen to represent the error between the original utterance z and the
synthetic utterance y:

E = (z− y)T (z− y). (18)

The parameters {µp,Σp} need to be changed to minimize this ob-

jective function E. The chain rule may be used to derive the rela-
tionship between E and the parameters:

∂E
∂ µi

=

(
∂E
∂y

)T ( ∂y
∂ µi

)

(19)

∂E
∂σi j

=

(
∂E
∂y

)T
(

∂y
∂σi j

)

. (20)

∂E
∂y may be obtained from Equation 18:

∂E
∂y

= −2(z− y). (21)

Since y is defined according to Equation 17, we can take its
derivative to compute ∂y

∂ µi
and ∂y

∂σi j
:

(DT Σ−1D+λW TW )
∂y
∂ µi

= DT Σ−1D
∂ µ
∂ µi

(22)

(DT Σ−1D+λW TW )
∂y

∂σi j
=

2DT Σ−1 ∂Σ
∂σi j

Σ−1D(y−µ). (23)

Finally, gradient descent is performed by changing the previous
values of the parameters according to the computed gradient:

µnew = µold −η
∂E
∂ µ

(24)

Σnew = Σold −η
∂E
∂Σ

. (25)

Cross-validation sessions were performed to evaluate the appro-
priate value of λ and the correct level of smoothness W to use. The
learning rate η was set to 0.00001 for all trials, and 10 iterations
performed. Comparison between batch and online updates indi-
cated that online updates perform better, so this method was used
throughout training. Testing was performed on a set composed of
1-syllable words, 2-syllable words, and sentences not contained in
the training set. The Euclidean norm between the synthesized tra-
jectories and the original trajectories was used to measure error.
The results showed that the optimal smoothness operator is fourth
order and the optimal regularizer is λ = 1000. Figure 9 depicts syn-
thesized trajectories for the α12 and β28 parameters before training
(in green dots) and after training (in red crosses) for these optimal
values of W and λ .

8 Post-Processing

Due to the head and eye normalization that was performed dur-
ing the pre-processing stage, the final animations generated by our
system exhibit movement only in the mouth region. This leads to
an unnerving “zombie”-like quality to the final animations. As in
[Cosatto and Graf 1998] [Bregler et al. 1997], we address this issue
by compositing the synthesized mouth onto a background sequence
which contains natural head and eye movement.

The first step in the composition process is to add Gaussian noise
to the synthesized images to regain the camera image sensing noise
that is lost as a result of blending multiple image prototypes in the
MMM. We estimate means and variances for this noise by comput-
ing differences between original images and images synthesized by
our system, and averaging over 200 images.
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Figure 10: The background compositing process: Top: A background sequence with natural head and eye movement. Middle: A sequence
generated from our system, with the desired mouth movement and appropriate masking. Bottom: The final composited sequence with the
desired mouth movement, but with the natural head and eye movements of the background sequence. The masks from Figure 3 are used to
guide the compositing process.

After noise is added, the synthesized sequences are composited
onto the chosen background sequence with the help of the masks
shown in Figure 3. The head mask is first forward warped using
optical flow to fit across the head of each image of the background
sequence. Next, optical flow is computed between each background
image and its corresponding synthetic image. The synthetic im-
age and the mouth mask from Figure 3 are then perspective-warped
back onto the background image. The perspective warp is estimated
using only the flow vectors lying within the background head mask.
The final composite is made by pasting the warped mouth onto the
background image using the warped mouth mask. The mouth mask
is smoothed at the edges to perform a seamless blend between the
background image and the synthesized mouth. The compositing
process is depicted in Figure 10.

9 Computational Issues

To use our system, an animator first provides phonetically anno-
tated audio. The annotation may be done automatically [Huang
et al. 1993], semi-automatically using a text transcript [Huang et al.
1993], or manually [Sjlander and Beskow 2000].

Trajectory synthesis is performed by Equation 17 using the
trained phonetic models. This is done separately for the flow and
the texture parameters. After the parameters are synthesized, Equa-
tion 7 from Section 6.3 is used to create the visual stream with the
desired mouth movement. Typically only the image prototypes Ii
which are associated with top 10 values of βi are warped, which
yields a considerable savings in computation time. MMM synthe-
sis takes on the order of about 7 seconds per frame for an image
resolution of 624x472. The background compositing process adds
on a few extra seconds of processing time. All times are computed
on a 450 MHz Pentium II.

10 Evaluation

We have synthesized numerous examples using our system, span-
ning the entire range of 1-syllable words, 2-syllable words, short
sentences, and long sentences. In addition, we have synthesized
songs and foreign speech examples.

Experiment # subjects % correct t p<

Single pres. 22 54.3% 1.243 0.3
Fast single pres. 21 52.1% 0.619 0.5
Double pres. 22 46.6% -0.75 0.5

Table 1: Levels of correct identification of real and synthetic se-
quences. “t” represents the value from a standard t-test with signif-
icance level indicated in the “p<” column.

Experimentally we have found that reducing the number of pro-
totypes below 30 degrades the quality of the final animations. An
open question is whether increasing the number of prototypes sig-
nificantly beyond 46 will lead to even higher levels of videorealism.

In terms of corpus size, it is possible to optimize the spoken cor-
pus so that several words alone elicit the 46 prototypes. This would
reduce the duration of the corpus from 15 minutes to a few seconds.
However, this would degrade the quality of the correspondences
computed by the Dijkstra algorithm. In addition, the phonetic train-
ing performed by our trajectory synthesis module would degrade as
well. Further systematic experiments need to be made in order to
evaluate how final performance changes with the size of the corpus.

We evaluated our results by performing three different visual
“Turing tests” to see whether human subjects can distinguish be-
tween real sequences and synthetic ones. In the first experiment
(“single presentation”), subjects were asked to view one visual se-
quence at a time, and identify whether it is real or synthetic. In
a similar second experiment (“fast single presentation”), the sub-
jects were asked to make the judgments in a fast manner while the
utterances were being presented without pauses in between. In a
third experiment (“double presentation”), the subjects were asked
to view pairs of the same utterance, where one item in the pair is
real and the other is synthetic (but randomly ordered). The subjects
in this experiment were asked to identify which utterance in the pair
is real, and which is synthetic. 16 or 18 utterances were presented
to each subject, with half being real and half being synthetic. As
seen from Table 1, performance in all three experiments was close
to chance level (50%) and not significantly different from it.
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Finally, we also evaluated our system by performing intelligibil-
ity tests in which subjects were asked to lip read a set of natural and
synthetic utterances.

Details on all experiments are forthcoming in a separate article.

11 Further Work

The main limitation of our technique is the difficulty of re-
compositing synthesized mouth sequences into background se-
quences which involve 1) large changes in head pose, 2) changes
in lighting conditions, and 3) changes in viewpoint. All these limi-
tations can be alleviated by extending our approach from 2D to 3D.
It is possible to envision a real-time 3D scanner that is capable of
recording a 3D video corpus of speech. Alternatively, techniques
such as those presented in [Guenter et al. 1998] [Pighin et al. 1998]
[Blanz and Vetter 1999] can be used to map a 2D video corpus into
3D.

The geodesic trajectory synthesis equations described by Brand
et al. [1999] [2000] are analogous (and more sophisticated) than
the trajectory synthesis techniques we use (Equations 12 and 17).
Although those equations require considerably more training data,
it is possible they could lead to higher levels of videorealism.

Clearly the face is used as a conduit to transmit emotion, so one
possible avenue to explore is the synthesis of speech under vari-
ous emotional states. It is possible to record various corpora under
different emotional states and create MMMs for each state. Dur-
ing synthesis, the appropriate MMM is selected. An open question
to explore is emotional dynamics: how does one transition from a
happy MMM to a sad MMM? Additionally, there is also a need
to learn generative models of head movement and eye movement
tailored for the type of speech being synthesized.
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A Appendix: Flow Concatenation
Given a series of consecutive images I0, I1, . . . In, we would like
to construct the correspondence map C0(n)

relating I0 to In. We
focus on the case of the 3 images Ii−1, Ii, Ii+1 since the concate-
nation algorithm is simply an iterative application of this 3-frame
base case. Optical flow is first computed between the consecutive
frames to yield C

(i−1)i,Ci(i+1)
. Note that it is not correct to con-

struct C
(i−1)(i+1)

as the simple addition of C
(i−1)i +Ci(i+1)

because
the two flow fields are with respect to two different reference im-
ages. Vector addition needs to be performed with respect to a com-
mon origin.

Our concatenation thus proceeds in two steps: to place all vector
fields in the same reference frame, the correspondence map Ci(i+1)

itself is warped backwards [Wolberg 1990] along C
(i−1)i to create

Cwarped
i(i+1)

. Now Cwarped
i(i+1)

and C
(i−1)i are both added to produce an

approximation to the desired concatenated correspondence:

C
(i−1)(i+1)

= C
(i−1)i +Cwarped

i(i+1)
. (26)

A procedural version of our backwarp warp is shown in figure 11.
BILINEAR refers to bilinear interpolation of the 4 pixel values clos-
est to the point (x,y).

for j = 0. . .height,
for i = 0. . .width,

x = i + dx(i,j);
y = j + dy(i,j);
Iwarped(i,j) = BILINEAR (I, x, y);

Figure 11: BACKWARD WARP algorithm

B Appendix: Forward Warping
Forward warping may be viewed as “pushing” the pixels of an im-
age I along the computed flow vectors C. We denote the forward
warping operation as an operator W(I,C) that operates on an image
I and a correspondence map C, producing a warped image Iwarped

as final output. A procedural version of our forward warp is shown
in Figure 12.

It is also possible to forward warp a correspondence map C′

along another correspondence C, which we denote as W(C′,C). In
this scenario, the x and y components of C′(p) = {d′

x(p),d′
y(p)}

are treated as separate images, and warped individually along C:
W(dx′,C) and W(dy′,C).

for j = 0. . .height,
for i = 0. . .width,

x = ROUND (i + αdx(i,j) );
y = ROUND (j + αdy(i,j) );
if (x,y) are within the image

Iwarped(x,y) = I(i,j);

Figure 12: FORWARD WARP algorithm

C Appendix: Hole-Filling
Forward warping produces black holes which occur in cases where
a destination pixel was not filled in with any source pixel value.
This occurs due to inherent nonzero divergence in the optical flow,
particularly around the region where the mouth is expanding. To
remedy this, a hole-filling algorithm [Chen and Williams 1993] was
adopted which pre-fills a destination image with a special reserved
background color. After warping, the destination image is traversed
in rasterized order and the holes are filled in by interpolating lin-
early between their non-hole endpoints.

In the context of our synthesis algorithm in Section 6.3,
hole-filling can be performed before blending, or after blending.
Throughout this paper, we assume hole-filling is performed before
blending, which allows us to subsume the hole-filling procedure
into our forward warp operator W and simplify our notation. Con-
sequently (as in Equation 6), the blending operation becomes a
simple linear combination of the hole-filled warped intermediates
Iwarped
i .

In practice, however, we perform hole-filling after blending,
which reduces the size of the holes that need to be filled, and leads
to a considerable reduction in synthesis blur. Post-blending hole-
filling requires a more complex blending algorithm than as noted in
Equation 6 because the blending algorithm now needs to keep track
of holes and non-holes in the warped intermediate images Iwarped

i :

Imorph(x,y) =
∑Iwarped

i
(x,y) 6=hole βiI

warped
i (x,y)

∑Iwarped
i

(x,y) 6=hole βi
(27)

Typically an accumulator array is used to keep track of the denom-
inator term in Equation 27 above. The synthesized mouth images
shown in Figure 6 were generated using post-blending hole-filling.
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